
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.3, March 2013

32

Manuscript received March 5, 2013
Manuscript revised March 20, 2013

Acceleration of Tsunami Wave Propagation Modeling based on
Re-engineering of Computational Components

Alexander Vazhenin†, Mikhail Lavrentiev††, Alexey Romanenko†††, and Andrey Marchuk††††,

†Graduate School Department, University of Aizu, Aizu-Wakamatsu, 965-8580, Japan
††Sobolev Institute of Mathematics of Russian Academy of Science, Novosibirsk, 630090, Russia

†††Department of Information Technology, Novosibirsk State University, Novosibirsk, 630090, Russia
††††Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk, 630090, Russia

Summary
The paper is devoted to creating effective and flexible Tsunami
Modeling Environment based on a Service-Oriented Architecture
(SOA) allowing high-level of operability and reusability of
system components. Accordingly, we use the original Virtual
MVC-design pattern (VMVC-pattern) approach that is
demarcating a Functional (View) and an Implementation (Model)
task by inducing an Integrator (Controller). This allows
integrating a big variety of methods and services for Tsunami
Modeling with respect to the various development platforms and
architectures. The Model is organized on a set of layers in the
form of Application Engines each of which is a subset of
endpoint services that holds specific logic associated to a
business process. Hence, an Engine can encompass
functionalities of an API and realize processing that is specific to
an application. The paper describes basic features of the MOST
(Method of Splitting Tsunami) software package that was used as
an initial Propagation Software Engine. This package was
accepted by the USA National Ocean and Atmosphere
Administration as the basic tool to calculate tsunami wave
propagation and to create inundation maps. We describe a set of
engines that was designed for several programming platforms
including OpenMP, CELL architecture, and GPU's allowing the
flexible usage of available computational resources. Paper also
includes an analysis the initial and output tsunami data, code
design techniques as well as results of some numerical
experiments and validation procedures.
Key words:
Tsunami Wave Propagation Modeling, Method of Splitting
Tsunami, Service-oriented Architecture, Virtual MVC-design
pattern, Fine-grained Parallelization.

1. Introduction

The complexity and importance of the Tsunami Modelling
Problem for many practical reasons require embedding
modern approaches in the software design. These
technological advances are introducing new types of social
interactions including collaboration among communities,
through tools such as Wikis and Social Networking, which
have already found its roots among all types of generations.
They facilitate exchange of tools, functionalities and
semantics. The end user based customization is possible

through integrating a wide range of underlying services.
Another challenge is creating scalable technologies, which
support an arbitrary number of users while offering them
with a personalized and customizable working
environment. Therefore, it is obvious that disparate
applications and services are being developed over
heterogeneous technologies and platforms. Thereby,
reusability and interoperability are the important aspects
for developing and exposing of computational services
[1,2].
As mentioned in [3], “lessons learned from the Japan
tsunami will provide direction to research and emergency
management communities on how to develop tools, models
and methods for mitigating impact of such devastating
event both locally and globally.” Shallow water
approximations (both linear and nonlinear) are considered
worldwide as the basic propagation models for tsunami
waves. These models describe reasonably well waves
parameters (both amplitudes and traveling times between
all recorded sources and available measurement stations)
even for rather rough digital bathymetry, provided that the
initial seabed displacement at source is given. Several
software packages have been proposed to simulate wave
propagation over the ocean and to calculate inundation
zones. Accordingly, we can distinguish several approaches
related to the practical realization of those packages.
The method described in [4] is oriented to create a parallel
hybrid tsunami simulator that can mix different models,
methods and meshes, maybe even incorporate ``alien
software''. This goal is achieved by combining overlapping
domain decomposition and object--oriented programming.
Actually, the computing performance is not a main goal of
this approach.
In paper [5], eight different parallel implementations were
used to simulate tsunami propagation with the help of the
shallow water equations. Each of these implementations
has used a mixed—mode programming model from thread
based shared memory to distributed memory and, finally,
to a virtual shared memory. As shown in this paper,
scalability issues become paramount, and threading

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.3, March 2013

33

becomes a significant bottleneck if sufficient node memory
is not available.
TsunamiClaw is a package based on a finite volume
numerical method, which means that the solution is rep-
resented as a piecewise constant, with numerical values
approximating the average solution value in each discrete
computational grid cell [6]. There is no specific reference
to the shoreline—grid cells may simply be wet or dry
depending on their location, and may fill-up or drain-out of
water as waves inundate or draw-down at the shoreline.
This means that dry land is part of the computational
domain, and a single grid is a simple rectangle that may
overlap the shoreline. TsunamiClaw solves the shallow
water equations in their physically relevant conservative
form, therefore, the solution is represented as water depth
and momentum.
TUNAMI-N2 software [7] is a tsunami numerical
simulation program with the linear theory in deep sea and
with the shallow water theory in coastal areas and on dry
land with constant grid size in the entire calculation
domain. TUNAMI was originally authored by Imamura in
1993 for the Tsunami Inundation Modeling Exchange
(TIME) program, and has been applied to several tsunami
events.
MOST (Method of Splitting Tsunami) [8,9], developed at
Pacific Marine Environmental Laboratory (NOAA, Seattle,
USA), allows for real time tsunami inundation forecasting
by incorporating real--time data from detection buoys. The
model MOST is also used in the United States for
developing inundation maps as well as for Tsunami
Inundation Modeling [10]. The system has also the web
enabled interface named ComMIT.
In this paper, we are focusing on transforming the Tsunami
Wave Propagation Modeling Software to a Service-
Oriented Architecture (SOA). This transformation was
based on the original Virtual MVC-design pattern
(VMVC-pattern) that was developed in University of Aizu.
It is in demarcating a Functional (View) and an
Implementation (Model) task by inducing an Integrator
(Controller). Encapsulating certain Non-Functional
activities such as security, reliability, scalability, and
routing can enrich the Controller. This enables the
separation of Integration Logic from that of Functional
Logic (Client Application) and Implementation Logic
(Service). With this approach, the View and Model
become loosely couple. Such abstract layer of controller
further enables the View to produce high-level queries that
are parsed and analyzed by the controller in order to
compose the required services.
According to this approach, the Model is represented as a
service inventory on a set of layers in the form of Engines.
An Engine is a subset of endpoint services that holds
specific logic associated to a business process. Hence, an
Engine can encompass functionalities of an API and

realize processing that is specific to an application.
Particularly, the presented paper is focused on design and
comparative analysis of parallel algorithms for the
OpenMP platform, IBM Cell BE architecture, and the most
attractive today CUDA for GPU use. Here we present
results of investigations of a performance gain, obtained
with the help of parallel technologies and devoted to fine--
grained parallelization of a part of the MOST software that
is used for calculating the tsunami wave propagation over
the deep ocean.
The rest of this paper is organized as follows. Section 2
explains the mathematical model for simulating wave
propagation used in the MOST software including
description of computational process and analysis of
numerical data needed for numerical modelling. In
Sections 3, we describe a set of computational engines that
was designed for several programming platforms. Section
4 contains results of some numerical experiments and
validation procedures. Finally, conclusion includes some
concluding remarks and comments about future work.

2. Mathematical Model and Calculation
Process

2.1 Mathematical Model

The approximations of shallow-water theory (both lineal
and non-lineal) are used as the basic models for describing
wave propagation throughout the ocean. These models
rather accurately reflect basic wave parameters
(propagation time period from the source to the recording
device and wave amplitudes) even for a fairly rough
numerical bathymetry in the assumption that initial
displacement in the source is unknown.
The MOST software package uses numerical model of
calculating wave propagation through deep water zone
applying decomposition method for spatial variables. This
method was initially developed in the Tsunami Laboratory,
Computer Center of the Siberian Division, Academy of
Sciences of USSR in Novosibirsk. Then the method was
updated in the Pacific Marine Environmental Laboratory
(NOAA, Seattle, USA) and was adapted to the models and
standards of data accepted by tsunami watch services in the
United States as well as other countries and used in
tsunami research works in most countries. MOST is used
to numerically simulate three processes of tsunami
evolution: the estimation of residual displacement area
resulting from an earthquake and tsunami production,
transoceanic propagation through deep water zones, and
contact with land (run-up and inundation). The given
research work is concerned with the second stage – deep
water wave propagation.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.3, March 2013

34

Nonlinear approximation of shallow water system is used
for numerical calculation of tsunami wave propagation as
follows [6]:

,

,

,0)()(

yyyxt

xxyxt

yxt

gDgHvvuvv
gDgHvuuuu

vHuHH

=+++

=+++

=++

 (1.1)

Where H(x, y, t) = h(x, y, t) + D(x, y, t), h - stands
for the height of the wave calculated from unperturbed
level, D – the function delineating bottom configuration
(digital bathymetry), u(x, y, t), v(x, y, t) – speed vector
components along x and y respectively, and g –
acceleration of gravity.
The adduced shallow water model soundly describes the
process of tsunami waves transoceanic propagation
providing that the horizontal dimension of ocean floor
surge by an order exceeds the ocean depth at that point.

System (1.1) could be presented in symmetric form:

F
y
zB

x
zA

t
z

=
∂
∂

+
∂
∂

+
∂
∂

, (1.2)

where

.

0

,
0
0

00

,
0

00
0

,

















=















=
















=
















=

y

x

gD
gD

F
uH

gu
v

B

uH
u

gu
A

H
v
u

z

The rectangular zone
}0,0:,{ YyXxyx ≤≤≤≤=Ω with its sides

parallel to coordinate axes will be viewed as the variation
domain of spatial variables.
The numerical algorithm to solve the system (1,2) is based
on spatial decomposition along axis directions. For this
purpose, let us study two backup systems, each of which
depends on one spatial variable only.

XxF
tx

A
tt

≤≤=+ 0,1∂
∂ϕ

∂
∂ϕ

; (1.3)

YyF
ty

B
tt

≤≤=+ 0,2∂
∂ψ

∂
∂ψ , (1.4)

where .
0

0
,

0
0 21
















=
















= y

x

gDF
gD

F

In order to find numerical solution of the system (1.2), it
will suffice to make numerically stable solution for systems
(1.3) and (1.4). Let us make the difference scheme for the
system (1.3). The equations for this system are put down as
follows:

() .0
,

,0

=+
=++

=+

xt

xxxt

xt

uHH
gDgHuuu

uvv

(1.5)

This is a quasi-linear hyperbolic system. All eigenvalues of
matrix A are real and diverse:

., 3,21 gHuu ±== λλ
We will use the canonical form of this system for the
numerical solution. This allows actualizing boundary
conditions for the finite-difference analogue of the
boundary value problem. The canonical form is put down
as follows:

.
,

,0

3

2

1

xxt

xxt

xt

gDqq
gDpp

vv

=+
=+
=′+′

λ
λ
λ

 (1.6)

where v’, p, q are Riemannian invariants of the system
(1.5) which have the following form:

.2
,2

,

gHuq
gHup

vv

−=
+=
=′

(1.7)

In order to find numerical solution of the system (1.6), it
was suggested to make an explicit difference scheme on a
four-point stencil with quadric approximation order
regarding spatial variables and first order approximation
with respect to time.

2.2 Calculation Process

Numerical calculation of tsunami wave propagation
process beginning from its spatial source usually starts
with stating initial conditions that represent water surface
vertical displacement zone (having summed it up with
depth we get the thickness of the water layer) and initial
wave stream velocity components. As a rule, in case of
submarine earthquakes this velocity is minor and can be
neglected, that is, it may be considered that water is
quiescent, though it is no longer in equilibrium condition

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.3, March 2013

35

because of some zone’s vertical displacement. Then only
boundary conditions are actualized for every calculation
step. In practice, as a rule, only wave amplitude has a
practical meaning. That is why outbound parameters of the
algorithm are represented by the values of water surface
elevation at all cross-points of computational grid at
certain given instants and sequences of ocean level values
at certain area points. Figure 1 shows the block-diagram
illustrating the main loop of calculating process.

Fig. 1 Tsunami wave propagation calculation process

To run a program, it is necessary to specify information on

• Bottom topography or bathymetry data;

• Initial and boundary conditions;

• Modeling parameters such as time-steps and
length of model run.

After launching, the main modelling program implements
calculations and stores results as a series of frames with
defined interval NF in the NetCDF format [11] that is a set
of software libraries and self-describing, machine-
independent data formats that support the creation, access,
and sharing of array-oriented scientific data. There are
some programs allowing analyzing and visualizing the
NetCDF data.

3. SOA and Propagation Engines for
Different Programming Platforms

3.1. SOA and Virtual MVC-design Patterns

Currently, the Service Oriented Architectures or SOA is
effective software design platform based on the service
virtualization that focuses on building new functionalities
and services without bothering about how the services will
be exposed, consumed and maintained. The service
virtualization has abstracted peer services for transparent
service lookup allowing flexible integration of
heterogeneous software components.
The Model-View-Controller (MVC) is another effective
way to avoid an expensive process of reinventing,
rediscovering and revalidating agnostic software artifacts.
As shown in [12], we are imitating the MVC design
patterns in order to explore the other composite patterns
for an efficient integration of the applications and services.
The demarcation of a Functional (View) and an
Implementation (Model) task can be achieved deliberately
by inducing an Integrator (Controller). Encapsulating
certain Non-Functional activities such as security,
reliability, scalability, and routing can enrich the
Controller. This enables the separation of Integration
Logic from that of Functional Logic (Client Application)
and Implementation Logic (Service).
In the original MVC design pattern, the View updates itself
from the Model, via the Observer pattern. Therefore, the
original MVC pattern works like a closed loop wherein the
View talks to the Controller, this as well connects to the
Model, which in turns talks to the View. As shown in
Figure 2, the direct link between the Model and the View
can be removed. With this modification, a complete
decoupling of the view from the model can be achieved. In
the redefined virtual MVC design pattern, Controller acts
as a single point of contact for the View layer and the
Model layer [13]. This implies higher privacy of the
business logic in Model from the View, and higher
reusability of application components.

Fig. 2 SOA for Tsunami Modeling

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.3, March 2013

36

Accordingly, the Controller can be considered as the
compound design pattern of the Enterprise Service Bus
(ESB) allowing integration of the software components by
using the Dependency Injection (DI) pattern. We are
proposing a design pattern based approach for the seamless
integration among disparate applications and services
based on the DI pattern that meets the most of the
requirements. We are exploring the DI to find a solution
for integrating and decoupling the services and
applications by their transformation from a stand-alone
program to a service-oriented tool.

The Model is organized on a set of layers in the form of
Application Engines each of which is a subset of endpoint
services that holds specific logic associated to a business
process. Hence, an Engine can encompass functionalities
of an API and realize processing that is specific to an
application [9]. The Propagation and Inundation Engines
can be constructed directly from the MOST software
package. In the next sections, we are demonstrating a set of
Propagation Engines developed for different programming
platforms.

3.2. Sequential Engine

The original code of the MOST software was implemented
on Fortran 90. It takes 3.31 seconds for one time step on 4
dual-core CPU server, based on Intel Xeon, 2.8GHz. After
porting this program onto a C/C++ language, it takes about
3.00 seconds to process the one time step. This program
was a basis for designing other propagation engines
allowing efficient usage of a variety of available
computational resources. This program was also adopted
to a Java environment with the calculation time about 18.5
seconds for one time step. This allows also embedding this
program into a Virtual MVC-architecture as well as
combining it with visualization tools.

3.3. OpenMP Engine

The OpenMP paradigm [7] is mainly focused on
performing loop iterations in parallel. Actually, a
programmer should only point loops in a sequential
program that can be processed in parallel.
As algorithm allows all rows and columns of input data to
be processed independently, main loop of the program
could be marked by the ‘#pragma’ terms in the following
form:

while(I++ < NI){
 #pragma omp parallel for
 for(x=0;x<NX; x++)
 processColumn(x);
// transpose 2D arrays
 …

 #pragma omp parallel for
 for(y=0;y<NY; y++)
 processRow(y);
 // transpose 2D arrays back
 …
}

To obtain a regularity of matrix scanning and effective
usage of the CPU cash for both computational steps, the
intermediate matrix transposition was introduced for both
computational steps. It is necessary to implement forward
and back transpositions of four matrices. Importantly,
matrix transpositions were implemented in parallel using
OpenMP operations based on a block-wise matrix
transposition. To optimize the block size, several
experiments have been carried out. This allowed achieving
the maximum of performance with block size of 64x64
elements. The performance optimization was also realized
using embedded SIMD-stream co-processors. From the
programmer’s point of view, they can be programmed
using special built-in CPU stream operations known as
SSE instructions. This part of executable code has been
rewritten using SSE instructions for calculations of
invariants, height of wave and its speed along axis. The
more detailed information about parallel OpenMP
algorithms for Tsunami modelling can be found in [].

3.4. IBM Cell BE Programming Environment

IBM Cell BE processor has the complex multicore
architecture allowing implementation of intensive
calculations in comparison with the ordinary CPU [16].
The Cell BE computational resources can be divided into
two parts. The Power Processor Element (PPE) is a
conventional processor the main responsibility of which to
set up tasks for the Synergistic Processor Elements (SPE)
that compute intensive Cell OS parts and applications. In a
Cell based operating system, the PPE runs the OS kernel,
service program and the most of the user’s applications.
The design of the Cell Engine was mainly focused on
distributing iterations along axis among SPEs.
Actually, it was necessary to provide several steps in order
to develop effective Cell Tsunami modeling algorithms.
The first step is in porting a sequential program and
running it on PPE. The next step was in reorganizing a
program in order to support the PPE to assign tasks for
SPEs. To increase the SPE performance, it was necessary
to overlap I/O operations with calculations and processing
operations by using two data buffers in SPE. One buffer is
for data processing, and the other one is to prepare next
portion of the data. The last re-engineering was done for
the SSE code optimization. It includes a vectorization
technique decreasing the number of operations in four
times as well as a quad word exchange for loading and

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.3, March 2013

37

storing data. Traditionally, the optimization was also
oriented to reach the high level of usage of operational
SSE registers.

3.5. CUDA Platform

Currently, the processing power of the Graphics
Processing Units (GPUs) has increased tremendously
allowing reaching a raw computing power of close to one
TFLOPS with a relatively small cost. That is why
researchers are looking at ways to utilize this efficiently for
non-graphics based applications also in the framework of
so-called GPGPU (General Purpose Graphics Processing
Units) architecture. Nvidia now supports a C like
programming language called CUDA [17,18] (Compute
Unified Device Architecture) that allows a programmer to
explicitly request that certain portions of the code be run
on the GPU. It allows implementing mathematical
algorithms on GPU knowing nothing about shaders,
vertexes and other stuff referred to graphics.
The initial tsunami modelling code was re-engineered in
order to adopt it to the GPU platform as follows:

for(int i=0; i<cfg.steps; i++){
// calculate along X
Invariants_X<<<dimGrid,
 dimBlock>>>(... , x_size, y_size);
SWater_<<<dimGrid,
 dimBlock>>>(... , x_size, y_size);
RInvariants_X<<<dimGrid,
 dimBlock>>>(... , x_size, y_size);

// calculate along Y
transpose<<<dimGrid,
dimBlock>>>(d_qwdata, d_q1data, x_size, y_size);
transpose<<<dimGrid,
dimBlock>>>(d_uwdata, d_u1data, x_size,

y_size);
transpose<<<dimGrid,
dimBlock>>>(d_vwdata, d_v1data, x_size, y_size);
Invariants_Y<<<dimGrid,
 dimBlock>>>(... , y_size, x_size);
SWater_<<<dimGrid_, dimBlock>>>
 (..., y_size, x_size);
RInvariants_Y<<<dimGrid,
 dimBlock>>>(..., y_size, x_size);
transpose<<<dimGrid_,
 dimBlock>>>(d_qwdata, d_q1data,
 y_size, x_size);
transpose<<<dimGrid_,
 dimBlock>>>(d_uwdata, d_u1data,
 y_size, x_size);
transpose<<<dimGrid_,

dimBlock>>>(d_vwdata, d_v1data, y_size, x_size);
// Save results
 ...
}

GPU has a SIMD-architecture that is oriented to perform
same operations on different data with some significant
advances. Therefore, matrix transposition was avoided
because of features of the texture memory allowing two-
dimensional data addressing. The good calculation
speedup was achieved by using multiplications instead
division operations. Discrete representation of modelling
data causes some inaccuracy in invariant computation
(kernels for Invariants_X and Invariants_Y) especially for
the square root computation function that brings up an
error in 1-2 least significant bits. This eventually leads to
spontaneous swaying of the ocean surface already with 50
iterations. Several solutions to be considered were: to
calculate invariants in double precision, to represent
double through 2 floats, or, alternatively, to eliminate
squared root computation within the mail loop. The first
two variants did not incur considerable failure in
productive capacity. Each stream multiprocessor currently
contains 8 modules for processing single-precision floats
and 2 for double-precision floats. The final variant – the
elimination of square root computation – turned out to be
the simplest and the most suitable in terms of its
implementation. Other optimization techniques are
described in [17].

4. Numerical Experiments and Validation

4.1. Common Remarks

As pointed in [3,13,19], only through parallel testing of
models under identical conditions, can the community
determine the relative merits of different computational
formulations, an important step to further improvements in
speed, accuracy, and reliability. It is important to note that
modern parallel architectures are effective in getting very
high performance. However, they are actually inefficient in
minimizing the rounding errors for operations of single or
double precision format. That is why a special testing was
provided in order to optimize inundation engines codes as
well as evaluate them on the equal data sets and conditions.
Let us estimate the data volume needed for successful
modelling and verification. For the typical digital
bathymetry it is enough to have the distance between the
mesh nodes about 3,6 km. Therefore, the computational
domain should have a size of 2048x2048 points to cover
the Pacific Ocean. Accordingly, the NOAA uses
2500x1800 mesh size. Taking into account this mesh size,

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.3, March 2013

38

it is possible to estimate the time complexity of the MOST
method. The complete wave propagation modelling
requires implementing calculations for multiple time steps.
The required number of such time steps is about 1440 to
cover for 24 hours time period.
We developed the original bathymetry covering the area of
the Pacific Ocean adjacent to the northwest of the island of
Honshu (Japan). The gridded digital bathymetry for
numerical modelling was prepared using 500m resolution
bathymetry around Japan [20], and 1 arc sec ASTER
Global digital elevation model [21]. A computational
rectangular grid of 2413x2405 points includes knots of
pre-setup values of depth. Length of a spatial step in both
directions made 0.0024844 geographical degrees that is
about 277m in a North-South direction and about 221m in
the West-East direction. The bottom relief of this
computational domain A1 is stretching from 34 to 40
degrees of North Latitude and from 140 to 146 degrees of
East Longitude is shown in Fig. 3.

Fig. 3. Visualization of the 2413x2405 gridded relief around NE coast of
Honshu island. Mesh size: 0.00248x0.00248 arc degrees (221x277 m).

We have also provided modelling according the tsunami
data generated from the Great Japanese Earthquake
(38.322°N, 142.369°E, Mw = 8.9 at 5:46:23 UTC) on
March 11, 2011 [22]. The fault length and width are
400km × 150km (Fig. 4). Next subsections are
demonstrating the results of evaluating these different
engines based on the data described.

4.2. OpenMP Engine

Fig. 5 depicts results of speedup obtained by following to
this simple strategy (graph “OpenMP”) that was used for
loops providing calculations along X and Y axes (Fig. 5).
Graph named “+Transposition” shows that this strategy
allowed obtaining stable speedup growing even that

additional time has been spend to implement matrix
transpositions. Results of the final parallel program
implementation using embedded SSE coding are also
shown in Fig. 5.
The best result is about ten times speedup for 5 cores in
comparison with the sequential program. Performance
decrease with more than 5 cores is because of using a
smaller amount of data to be processed, and a prevalence
of communications over the computations in CPUs.

Fig. 4. Modeling according the Great Japanese Earthquake data

Fig. 5. OpenMP Engine Calculation Speedup

As was pointed above, we used the fixed mesh size
required by acceptable result accuracy. Actually, here we
have additional possibilities to increase performance by
increasing a size of mesh. To analyse the accuracy of
parallel algorithms, a set of numerical experiments are also

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.3, March 2013

39

provided with different types of data distributions among
the processes. The final result fluctuates in the acceptable
range of error measurements. The results demonstrate also
good system scalability allowing calculating the one
modelling step for 0.18 seconds at 16-cores system with
shared memory access SMP 4 x Intel Xeon CPU X7350,
2.93GHz.

4.2. IBM Cell BE Engine

This engine was realized on the SONY PlayStation 3 (PS3),
the architecture of which includes the Cell Broadband
Engine (Cell BE) Processor in which six SPE nodes are
actually used for work. Others two are used for resource
reservation. Fig. 6 presents result of measurements time
required for one modeling and corresponding speedup
depending on number of SPE.

Fig. 6. Cell BE Engine calculation time and Speedup

To process all data, they needed to be distributed among
SPEs. The way when SPEs take the sub-tasks is more
preferable in contrast to the variant when PPE acts as a
master sending tasks to SPEs. One PPE hardly could have
enough time to manage all SPEs, because processing time
is rather small (our case). We were limited by amount of
local memory for each SPE.
Taking into account a problem complexity (about 109
operations), the maximum performance is about 17
GFLOPS for the one modelling step 6 SPE (Fig. 6). It is
more than 5 times faster than a parallel version optimized
for 4 cores for OpenMP Engine as well as more than 50
times faster than the original sequential version.

4.3. CUDA Engine and Validity Testing

The best results were obtained using Tesla C2050 GPU.
The calculation speedup was about 150 times for a single
modelling step. Table 1 shows results of the tsunami wave
propagation modelling with the two types of bathymetry
and data initial sources described in subsection 4.1. The
modelling was implemented according to the scheme of
Tsunami Wave Propagation Calculation Process showed in
the Figure 1. The modelling parameters were as follows.
The total number of iterations was NI=5000, and the
number of iterations between two frames was NF=100. So,
the output file contains fifty frames for all experiments.
Results show that the CUDA Engine supports calculations
with high level of performance even the presence of the
input/output operations.

Table 1: Results of Testing of Tsunami Wave Propagation Calculation
Process

Special attention was paid to evaluate the accuracy of
parallel engines. The evaluation was implemented by
numerical and visual comparison of FORTRAN-based
calculation results with the other engines. For example, is
able to process trans-oceanic tsunami wave propagation in

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.3, March 2013

40

less than 15 minutes (4' mash). Maximum distortion is less
that 0.001 cm comparing to the FORTRAN-based engine.

5. Conclusion

Modern applications and services are rather diverse and
disparate with respect to the various development
platforms and architectures. The communication gap and
integrity are improving gradually. In order to achieve the
high level of application and service reusability, it is more
effective to integrate the applications and services rather
than rebuilding because redevelopment is a costly affaire.
The design patterns based approach enables us to reuse the
proven and consolidated design knowledge, supporting the
development of high-quality software systems.
We developed and tested a set of tsunami modelling
engines supporting several parallel platforms including
OpenMP, CELL architecture, and GPU's. The set
computational services can be provided allowing the
flexible usage of available computational resources and
services. The numerical experiments and validation
procedures confirm the reliability of proposed technique as
well significant acceleration of modelling process. They
allow also design a variety of applications based on
component-wise design approach.

References
[1] Th. Erl, SOA Design Patterns, Prentice Hall, 2010.
[2] M. Kuniavsky, Smart Things: Ubiquitous Computing User

Experience Design, Elsevier, 2009.
[3] V. Titov, “March 11, 2011 Tohoku-Japan Tsunami: Lessons

from Forecast Assessment”, Proc. of the Joint International
Conference on Human-Centered Computer Environments
(HCCE '12), Aizu-Wakamatsu, Japan, ACM Publisher, pp.
99-100, 2012.

[4] X.Caiand, P.Langtangen, “Making Hybrid Tsunami
Simulators in a Parallel Software Framework”, LNCS, vol.
4699, Springer-Verlag, pp. 686–693, 2008.

[5] K.Ganeshamoorthy, D. Ranasinghe, K.Silva, and R.Wait,
“Performance of Shallow Water Equations Model on the
Computational Grid with Overlay Memory Architectures”,
Proc. of the Second International Conference on Industrial
and Information Systems (ICIIS 2007), IEEE Press, Sri
Lanka, pp. 415–420, 2007.

[6] D. George, TsunamiClaw User’s Guide,
http://faculty.washington.edu/rjl/pubs/icm06/TsunamiClaw
Doc.pdf.

[7] N.Shuto, F.Imamura, A.C.Yalciner, and G.Ozyurt,
TUNAMI2: Tsunami Modeling Manual,
http://tunamin2.ce.metu.edu.tr/

[8] V. Titov, “Numerical Modeling of Tsunami Propagation by
using Variable Grid”, Proc. of the IUGG/IOC International
Tsunami Symposium, Computing Center Siberian Division
USSR Academy of Sciences, Novosibirsk, USSR, pp. 46–51,
1989.

[9] V. Titov and F. Gonzalez, “Implementation and Testing of
the Method of Splitting Tsunami (MOST)”, Technical
Memorandum ERL PMEL-112, National Oceanic and
Atmospheric Administration, Washington DC, 1997.

[10] J.C. Borrero, K. Sieh, M. Chlieh, and C.E. Synolakis,
“Tsunami Inundation Modeling for Western Sumatra”, Proc.
of the National Academy of Sciences of the USA, Vol. 103,
N 52, http://www.pnas.org/content/103/52/19673.full, 2006.

[11] NetCDF (Network Common Data Form) -
http://www.unidata.ucar.edu/software/netcdf/

[12] S. Rajam, R. Cortez, A. Vazhenin, S. Bhalla. “Modified
MVC-design Patterns for Service Oriented Applications”,
Frontiers in Artificial Intelligence and Applications. IOS
Press, Vol. 231, pp. 108-126, 2011.

[13] A. Vazhenin, K. Hayashi, Al. Romanenko, “Service-
oriented tsunami wave propagation modeling tools”. Proc.
of the Joint International Conference on Human-Centered
Computer Environments (HCCE '12), Aizu-Wakamatsu,
Japan, ACM Publisher, pp. 131-136, 2012.

[14] R.Chandra, Parallel Programming in OpenMP, Morgan
Kaupmann Publishers, 2001.

[15] M. Lavrentiev-jr, A. Romanenko, V. Titov, A. Vazhenin,
“High-Performance Tsunami Wave Propagation Modeling”.
LNCS, vol. 5698, pp. 423-434, 2009.

[16] CellBroadband Engine, Programming Handbook, IBM 2007.
[17] N. Corporation, CUDA: Compute Unified Device

Architecture Programming Guide. Tech. rep., 2007.
[18] CUDA C Programming Guide,

http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html.

[19] C. Synolakis1, E. Bernard, V. Titov, U. Kanogl̆u, F.
Gonzalez. “Standards, criteria, and procedures for NOAA
evaluation of tsunami numerical models”. NOAA Technical
Memorandum OAR PMEL-135, 2007.

[20] http://jdoss1.jodc.go.jp/cgi-bin/1997/depth500_file.
[21] http://www.gdem.aster.ersdac.or.jp/search.jsp.
[22] http://iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/ts

unami.html

Mikhail Lavrentiev graduated from the
Novosibirsk State University
(mathematics) in 1978. He received PhD
in differential equations in 1982, associate
professor since 1986, second doctoral
degree in 1993, full professor since 2012.
He works in the Novosibirsk State
University and with the research institutes
of the Russian Academy of Sciences

(Sobolev Institute of Mathematics and Institute of Automation
and Electrometry). Major interests are in the area of math and
computer modeling in geo-sciences.

Alexey Romanenko received the B.S. and
M.S. degree in Physics (speciality –
Computer science) from Novosibirsk State
University in 1999 and 2001, respectively.
He received PhD in software engineering
in 2004. During 1999-2004, he stayed in
Supercomputer Software Department,
Institute of Computational Mathematics

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.3, March 2013

41

and Mathematical Geophysics SB RAS to study modern compute
architectures, algorithms, and techniques. From 2006 he is
involved in adopting of geoscince models to GPUs. Now he is
with Novosibirsk State University (Russia) and NVIDIA Ltd.

Andrey Marchuk received the M.S.
degree in applied mathematics from
Novosibirsk state university in 1976.
During 1976-1983, he stayed in the
Institute of pure and applied mechanics
SD RAS. There in 1981 he has got PhD in
numerical mathematics. Since 1983 he is
working in the Institute of computational

mathematics and mathematical geophysics SD RAS (Novosibirsk,
Russia) where he was studying numerical modeling of tsunami
waves. In 2000 he have got degree of Doctor of physics-
mathematical sciences in numerical modeling. He also works in
Novosibirsk state university as leading researcher. Andrey
Marchuk received the M.S. degree in applied mathematics from
Novosibirsk state university in 1976. During 1976-1983, he
stayed in the Institute of pure and applied mechanics SD RAS.
There in 1981 he have got PhD in numerical mathematics. Since
1983 he is working in the Institute of computational mathematics
and mathematical geophysics SD RAS (Novosibirsk, Russia)
where he was studying numerical modeling of tsunami waves. In
2000 he have got degree of Doctor of physics-mathematical
sciences in numerical modeling. He also works in Novosibirsk
state university as leading researcher.

Alexander Vazhenin received his M.S in
Computer Engineering from the
Novosibirsk State Technical University
(Russia) in 1978. He received his PhD in
Computer Science from the Institute of
Informatics Systems of the Siberian
Division of the Russian Academy of
Sciences in 1993. He published about
100 refereed academic papers. His
research and educational interests include

parallel architectures, algorithms and programming tools, self-
explanatory software high-accuracy computations, visual, and
multimedia and Internet technology. He has been program and
organizing committee member of many international conferences.
He is currently senior associate professor at the University of
Aizu, Japan.

